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After the shape and orientation of a molecule have been determined by Patterson, Fourier-trans- 
form, or other methods its position in the unit cell must be found. Details are given of a method 
by which this has been done, and examples are given for projections of structures which have the 
plane groups p2 and pgg. Some theoretical implications and possible lines of development are 
indicated. 

Introduction 

In  applying the principles of physical optics to the 
determination of crystal structures, Hanson, Lipson & 
Taylor (1953) have shown that ,  for certain space 
groups, the problem is to be treated in two stages; 
first the shape and orientation of the molecules should 
be found and then the molecules can be located in the 
unit  cell. The optical methods described, however, deal 
mainly with the first stage, and the second stage has 
been left to trial-and-error methods, except for certain 
special cases. I t  would obviously be a great advantage 
if an objective method of solving the position problem 
were available, particularly if there happened to be 
some doubt  about the shape of the molecule; the 
possibility of improving a slightly incorrect molecule 
by Fourier refinement would be greatly increased if 
it were correctly placed. Such a method is described 
in the present paper. 

I t  should be pointed out immediately that ,  although 
the idea arose out of optical transform studies, it could 
be applied equally well in conjunction with the more 
usual computational methods of testing trial struc- 
tures. There are also some interesting theoretical im- 
plications. These cast some light on the problem of 
structures which, though giving a reasonably low 
agreement residual, cannot be satisfactorily refined by 
Fourier methods. The method has already been used 
on the structure of triphenylene (Klug, 1950), which 
falls into this category; the published structure turns 
out to have molecules of the correct shape and orienta- 
tion in completely incorrect positions. Details of the 
corrected structure will be published later. 

Basic principles 

The idea can best be introduced by referring to the 
optical transforms (Hanson et al., 1953) of arbi t rary 
arrangements of holes shown in Fig. 1. 

Fig. l(a) is the optical transform of one molecule 
of the hypothetical  structure shown inset. If this were 
the sole content of the unit cell, the intensities at points 

in the X-ray diffraction pat tern  would be proportional 
to the intensities at  the corresponding points of this 
figure (assuming tha t  the change of scattering factor 
with angle is taken into account (Lipson & Taylor, 
1951)). If, however, the effective unit cell of the projec- 
tion contained two such molecules, related by a centre 
of symmetry,  a second factor would be introduced and, 
for a given molecular shape, the intensity at a point 
would change if the relative positions of the molecules 
were changed. The maximum possible intensity at  any 
point, regardless of relative molecular positions, would 
still be proportional to the intensity at  the corres- 
ponding point in Fig. 1 (a) ; the value actually observed 
would depend on the position of the point chosen 
relative to the wavy fringe system tha t  crosses the 
transform (Fig. l(b)) and which in turn  depends on 
the relative positions of the molecules. In  the particular 
case of centrosymmetrical molecules (which have 
identical projections when related by a centre of sym- 
metry  or twofold axis) the fringes are straight (Fig. 
1(c)). 

The principle of the optical method, as applied to 
structures containing molecules related by a centre 
of symmetry  in the projection, is to adjust  the shape 
and orientation of a single molecule until the intensities 
at points of its transform corresponding to the strong- 
est X-ray intensities are sufficiently great; the weaker 
reflexions are ignored at this stage. The weak X-ray 
intensities may occur either because the intensity in 
the transform of the single molecule is low, or because 
of the operation of the fringe function. In applying 
the present method, points are chosen for which the 
X-ray intensity is low even though the optical trans- 
form of the single molecule allows a high maximum 
value. The observed values must then be governed 
chiefly by the fringe function, and information about 
the relative positions of the molecules can be derived. 

I t  was pointed out in the earlier paper (Hanson 
et al., 1953) that ,  for pyrene, the straight fringes can 
be observed directly in the weighted reciprocal-lattice 
section, and Woolfson (1953) has made use of such 
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The theory and an example for the projection of a 
structure containing two molecules in the unit cell in 
the plane group p2 will be considered first. Later it 
will be shown that  the method can be extended to 
more complicated structures, and the theory and an 
example for the plane group pgg with four molecules 
in a unit cell will be given. 

Fig. I. (a) Optical t r ans form of a hypothe t ica l  a s y m m e t r i c  
uni t  of five holes. (b) Optical t r ans form of two of the  same 
units  ar ranged cen t rosymmet r ica l ly .  (c) Optical  t r ans fo rm 
of two cen t rosymmet r ica l  uni ts  a r ranged  cen t rosymme-  
trically. (From Hanson,  Lipson & Taylor ,  1953; reproduced  
by  permission.) 

fringes in determining the structure of 1 :1 :6 :6  tetra- 
phenylhexapentaene. The procedure is often difficult, 
however, and becomes impossible with the wavy 
fringes associated with non-centrosymmetrical mole- 
cules. 

Theory of the method 

The Fourier transform G o of a set of points represented 
by vectors r~ with respect to an origin 0 is a function 
which, at some point in reciprocal space represented 
by a vector S, is given by the equation 

N 
G O = ~ f .  exp {27dr. • S},  (1) 

n = l  

where f .  is the scattering factor associated with each 
point (see, for example, Lipson & Cochran, 1953). 

If the origin is now re-chosen at a point 0 ' ,  where 
the translation vector 0 ' - 0  is r (see Fig. 2), the trans- 
form becomes 

°2 0 

n 

O' 

Fig. 2. Relat ionship be tween the  coordinates  of an a tom rela- 
t ive to the  a rb i t r a ry  origin 0 and  the  coordinates  relat ive to 
the  t rue  origin O'. 

N 
Gr = • fn exp t2zti(rn + r ) .  S} 

n=l  
N 

= : f .  exp {e ir. • s}  exp {2 ir • S} 
n=l  

= G o exp {2zdr • S} (from equation 1). 

If another, centrosymmetrically related set of points 
is now added at a distance - r  from the new origin, 
then the transform of this new set alone is 

G_, = Go* exp { - 2 z d r  • S} ,  

where Go* is the complex conjugate of G o . The total  
transform, G, of the two sets, relative to the origin 
at O' is thus 

a = ar+a_  = a0exp {2 ir. S}+G* exp {-2 ir. S}.  

But  

G O = ]Go[ exp {i~o} and G* = [Go] exp { ' i ~ o } ,  

where 9o is the phase angle at the point S in G o. 
Therefore 
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G = laol exp {iVo} exp {2 ir • S} 
+taol exp exp {-2 ir • S} 

= l a d  exp {2stir • S+q0  } 
+[G0[ exp { - (2 : f i r  • S+~0)} 

= 2[G01 cos (2:~r • S+~o ) . (2) 

This result may  be related to the Figs. l(a), (b) 
and (c). Fig. l(a) represents the transform G O with 
respect to some arbi t rary origin 0 (strictly speaking 
it  represents [Go[ 9, since the intensity is recorded 
photographically). Fig. l(b) represents the transform 
G of two units related by a centre of symmetry  at 0', 
a point removed by a distance r from O. 

Equat ion (2) shows tha t  ]GI has a maximum value 
of 21G0]; tha t  is, the amplitude at  a point in Fig. l(b) 
can never exceed twice the amplitude at a correspond- 
ing point in Fig. l(a). The quant i ty  cos(2:rir • S+~v0) 
represents a fringe system which, because 9% varies 
from point to point in reciprocal space, is not straight. 
I t  may however have straight portions in regions over 
which qo is almost constant;  such straight sections can 
be seen in Fig. l(b). The units from which Fig. l(c) 
was derived are themselves centrosymmetrical and 
therefore ~o can take values of 0 or :r only. Equation 
(2) thus reduces to 

G= ±2 I G0[ cos 2 : t r .  S 

and the fringes are straight. In  order to make use of 
equation (2) it must  be re-written 

(~-q%)/2z = r .  S (3) 

by making the substitution ~v = cos -1 G/21Gol. 
:Now r . S  = h X + k Y ,  where X and Y are the 

fractional coordinates of the arbi t rary origin 0 with 
respect to the true origin 0 '  at  the centre of symmetry  
of a unit cell, and h and k are the indices correspond- 
ing to a point S in reciprocal space. Thus 

h X + k Y  = ( ~ - ~ 0 ) / 2 ~  • (4 )  

In  any particular problem the magnitudes of G at  
different points are known (]G[ = [Fol if Fo is on an 

abso lu t e  scale) but  the signs are unknown. [Go[ and 
~o at any point h,k can easily be calculated for the 
proposed molecule relative to an arbi t rary origin. I t  is 
thus possible to set up equation (4) for various values 
of h and k with X and Y as the only unknowns. 

Such a set of simultaneous equations could be solved 
if it were not for the fact tha t  ~ (being derived from 
an inverse trigonometrical function) is multivalued and 
also tha t  qo may  take any one of a series of values 
differing by 2:~. 

Equation (4) should, therefore, be re-written 

hX  + k Y = (2nze+~v'- ~0)/2:t (5) 

for positive values of G (= F positive), 

h X + k Y  = ( (2n+l)z t±~ ' -~0) /2z t  (6) 

for negative values of G (= F negative), 

where ~v' is the value of cos -1 IG[/2[Go] lying between 
0 and ½:~ and q% is the value of ~v o lying between 
0 and 2:~. Expressions (5) and (6) could, of course, 
be combined in one equation, but  the cross-checking 
of results is simplified if they  are kept separate. Since 
the sign of G is unknown, both equations must be 
considered. 

Solution of the equations 

If the equations (5) and (6) are set up for a particular 
reflexion hk0 the choice of true origin is immediately 
limited to points which lie on a family of straight lines 
of slope -h / k ,  intercepting the X axis at points 

X = (2nze-4-v2'-Cfo)/2z~h 
and 

X = ((2n+l)zr±~'-~v0)/2zth. 

If the equations are set up for a second pair of values 
of hk, a second family of straight lines is produced 
and the origin can then only lie on one or other of the 
intersections of the two sets of lines. Symmetry  con- 
siderations show tha t  it is only necessary to consider 
the region of ' X - Y  space' lying between X = ±0.25 
and Y = ±0.25. I t  is obvious, therefore, tha t  from two 
observed reflexions the origin can be limited to a finite 

:number of possible positions. If now the equations 
are set up for more pairs of values of h and k, some of 
these possibilities may  be eliminated; it is found in 
practice that,  if suitable points are chosen, only about 
6-8 reflexions are needed to fix the origin uniquely. 
There are a number of practical points to be noted in 
applying the method and these will be given after the 
example. 

A simple application 

Pyrene (Robertson & White, 1947) has four centro- 
symmetrical molecules in its unit  cell and the space 
group is P21/a. The effective unit cell of theproject ion 
along [010] contains two molecules in the plane group 
p2, and therefore the method can be applied directly 
to determine the X and Z coordinates of the molecules. 
Since the molecules are centrosymmetrical, the arbi- 
t ra ry  origin 0 was chosen at the centre of symmetry ,  
thus making ~0 = 0 or :~. 

To avoid confusion, all fractional coordinates were 
taken relative to the full unit cell, so the formula for 
~'  has to be changed to cos -1 Fo/4IGo], since the 
maximum possible value at any point is the contribu- 
tion of all the four molecules. Also, because of the 
halving of the unit cell and because the molecule is 
centrosymmetrical, it is necessary to consider only one 
quadrant  of ' X - Z '  space, tha t  is, values of X and Z 
from 0 to 0.2~. The values of G O for the indices used 
were calculated for an idealized molecule. 

In Fig. 3, six families of lines have been plotted and 
give a unique solution. The families for 001 (one line) 
and 200 (two lines) were plotted first and are shown 
as broken lines in the figure. These lines intersect at  
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only two points, and these are therefore the only 
positions for the origin which would give satisfactory 
agreement for these two reflexions. I t  should be pointed 
out, however, that  the fringes corresponding to these 

o.251 i'~÷ _ ~ - " 7 _  ' ¢',/~ 

/ 

X 0 0-25 

Fig. 3. The solution of equations (5) and (6) for six reflexions 
from pyrene. All the members of families corresponding to 
axial reflexions and representatives of each of the other 
families are labelled. 

low-order reflexions are so broad that  the agreement 
is not very sensitive to small changes in position of the 
origin. They must be regarded as indicating the region 
of the origin rather than its precise position. The 006 
family (six lines) and the 12,0,5 family (seventeen 
lines) intersect in a large number of places, but, in 
particular, they intersect at points that  are very close 
to the intersections of 001 and 200. Either of these two 
intersections, therefore, will satisfy 001,200, 006, and 
12,0,5. The families for 40~ and 10,0,2 were added 
next. For both these reflexions Fo is less than 3 and 
therefore the origin position is restricted not to the 
lines themselves but to the region between the line 
corresponding to Fo--  +3 and Fo = - 3 .  This is in- 
dicated by the shading. The four bands of 404 and the 
six bands of 10,0,2 intersect at twelve places, but only 
one of these coincides with one of the two previous 
intersections. Thus there is only one position for the 

origin which gives agreement f0r all the six reflexi0ns. 
More families could be added to confirm this choice 
or to fix the position with greater precision. The frac- 
tional X and Z coordinates of this intersection are 
0.118 and 0.054 which are equivalent to 1.60 A and 
0.45 A. The final coordinates found by Robertson & 
White, after refinement, were 1.604 ~ and 0.470 A. 

Practical points of importance  

In theory all the reflexions could be used, but it is 
rarely necessary to use more than eight or ten. I t  is 

important, however, to use great care in selecting the 
reflexions to be used. The following general rules will 
be found useful. 

First it is always desirable to include one or two low- 
order reflexions as these give only a few lines and 
restrict the possible positions of the origin much more 
than the higher orders. In general, it is useful to plot 
the low-order lines first and then gradually to add 
higher-order families to eliminate all but one of the 
alternatives and to increase the accuracy of location 
of the true origin. 

Secondly, if the molecular shape or orientation is 
incorrect the intersection will not be exact and it will 
not be possible to satisfy the requirements of all the 
reflexions. If part of the molecule is thought to be 
more reliable than the rest, the reflexions used should 
be chosen in regions where the contribution of the 
most reliable part is predominant. For instance, for a 
molecule consisting of a benzene ring with a side group, 
the orientation of the benzene ring may be known much 
more precisely than the configuration of the side 
groups. The reflexions used should therefore be chosen 
from the regions corresponding to the intense parts of 
the benzene transform. 

Thirdly, since the ratio of Fo to a calculated max- 
imum 2JG0J is involved, the scale of ~'o is important. 
In the example just given, the structure being known, 
the absolute scale was also known. At the beginning 
of an investigation, however, the scale may not be 
known with any degree of accuracy. I t  is important, 
therefore, to choose reflexions which are observed very 
small but which have high values of 21G0[--that is, 
which lie on high parts of the transform of the single 
molecule---in order to minimize this error. If only 
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! !  006 
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1 / i  

, ~  006 

x 0.25 
Fig. 4. An approximate solution of equations (5) and (6) for 

pyrene derived by using the approximation Fo = 0 for five 
reflexions. The position of the intersection from Fig. 3 is 
marked ×. 
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reflexions which are observed zero were used, then the 
method would be independent of scale, but usually 
there are not enough of these. I t  is sometimes adequate 
to choose reflexions which are observed fairly small, 
and which lie on intense parts of the single transform 
but  make the approximation Fo = 0. Fig. 4 shows the 
effect of applying this approximation to five of the six 
reflexions for pyrene which were used before. There is, 
of course, no true point of intersection, but it can be 
seen tha t  the closest approach to an intersection occurs 
very close to the point found by the more accurate 
method (marked x ). 

Finally, it must be remembered tha t  ~0 must be 
placed in the right quadrant  (for example if A and B 
are both negative ~ < ~0 < 3~/2 (cf. International 
Tables, 1952)). Fortunately,  a simple method exists 
by which the self-consistency of the method can be 
checked. Consideration of equations (5) and (6) shows 
tha t  the diagram could be used to estimate the changes 
in 2,¢ which would occur if the separation of the mole- 
cules were changed. The lines of one family represent 
positions of the origin which make IFcl for the corres- 
ponding reflexion equal  to IFo]. If, for example, the 
origin were moved away from the line corresponding 
to 2, positive towards tha t  corresponding to 2' nega- 
tive, 2,c would decrease, becoming zero at a point 
half-way between. Thus, once an origin has been 
selected, whether it is at a true intersection or not, 
the 2, values for the reflexions used can be estimated 
and compared both in magnitude and sign with those 
calculated by conventional methods. 

Thus, in Fig. 3, if the origin were placed at  P,  
12,0,5 would have F~--2 ,0  and would be positive; 
200 and 006 would both have F c = zero; 404 and 
10,0,2 would both have 2,~ very high and positive, as 
P lies half-way between two positive lines in each case. 

Ex tens ion  of t heo ry  to plane group pyf f  

With slight modifications, the method can be applied 
to the plane group pgg, with four molecules in the 
unit cell. In  this plane group there are two pairs of 
centrosymmetrically related molecules. One pair has 
the centre of symmetry  at 0, 0 and the other at ½, ½. 
The transform of one pair is the mirror image of the 
transform of the other pair and, because of the dif- 
ference in position of the centres of symmetry,  the 
transforms have phase differences which are such tha t  
the two transforms add at  points for which (h+]c) is 
even and subtract  where (h+]c) is odd. The shape can 
still be worked out using the transform of one mole- 
cule, but  it is now only necessary to ensure tha t  the 
strong reflexions lie on strong parts either of the trans- 
form or its mirror image. In practice it is easier to look 
at  the problem the other way round and ensure tha t  if 
(hkO) is strong, either hkO or h]c0 lies on a strong par t  
of the transform. The method can thus be used to 
determine the separation of one pair of molecules if the 
reflexions are chosen for which the contribution of one 

molecule of this pair is large and the contribution of 
one molecule of the other pair is zero. This extra 
condition governing the choice of reflexions restricts 
the choice so much tha t  in order to obtain enough 
usable reflexions it is necessary to relax the condition 
and make allowance for the margin of error introduced. 

Suppose G o is the transform of one molecule relative 
to its arbi t rary origin 0 as before at  a point S in reci- 

procal space. Let G o be the transform of the corre- 
sponding molecule of the other pair and q50 the corre- 
sponding phase angle. Then the contribution of the 
pair of molecules related by a centre at 0, 0 will be 
given by 

G 1 = 2[G0[ cos (2~r .  S+~0 ) 

as before, and the contribution of the other pair, 
related by the centre at  ½, ½ will be 

G~ = 21G0J cos (2~r .  S+qS0). 

The total  is thus 

G = 2]G0[ cos ( 2 n r .  S+~0)+2[G0[ cos (2nr.S+qSo), 

the positive sign being taken if (h+k) is even at the 
point S and the negative sign if (h+k) is odd. 

Thus if [G01 is zero, the expression reduces to tha t  
previously obtained for p2, i.e. equation (2). 

m 

If, however, [G0[ is not zero we must write 

G = 2[G0] cos (2n r .  S + ~ 0 ) + e ,  

where e is the error introduced and may  take any value 
between +2[G0[ and -2[G0] according to the value of 
the cosine function which is unknown. We must thus 
modify the expression for y~' to v2'=cos-l(G+e)/2[Gol, 
taking, as before, the value between 0 and ½7~. 

For axial reflexions, 

G O = d 0, G = 4]G0] cos (2~r .  S+~0 ) 

and ~o' = cos -1 G/4[Go]. 

The equations can thus be set up and solved graphi- 
cally as before, except tha t  when e has a finite value 
the loci of possible positions for the origin will no longer 
be a family of lines but  a family of bands. In practice, 
lines are drawn for the extreme negative and positive 
values of e and the region between is shaded in some 
way. Obviously e should be kept as small as possible in 
order to keep the bands as narrow as possible. 

Application to purpurogallin 
Purpurogallin (Taylor, 1952; Dunitz, 1952) has the 
space group P21212 with four molecules in the unit cell. 
The [001] projection thus has the plane group pgg and 
the modified theory can be applied. The molecule is 
non-centrosymmetrical and the method has been ap- 
plied to the first trial molecule found by Taylor before 
the Fourier refinement and the scale of F 's  available 
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Fig. 5. F i r s t  s tage  of the  solut ion for purpurogal l in .  The  comple te  families corresponding to  the  axial  ref lexions 200 and  020 

are shown in b roken  lines; por t ions  of the  families for th ree  more  reflexions are shown where  the  bands  pass  close to  inter-  
sect ions of the  b roken  lines. The e x t e n t  of the  bands  is indica ted  b y  the  double -headed  arrows on one m e m b e r  of each fami ly .  

at that  time was used. The result would therefore be 
expected to be less precise than that  for pyrene. 

Two axial reflexions and six other reflexions were 
chosen according to the principles outlined above. For 
each of these Go, Go and 7~o were calculated, and from 
these ~, and hence the range of values for ~v', could be 
found. In  Fig. 5 the four vertical and four horizontal 
broken lines correspond to the two axial reflexions and 
give sixteen possible positions for the origin. These 
reflexions are not very small and scale errors may 
therefore be appreciable so that  slight movements 
away from these precise positions may be expected, 
but they do fix likely regions. 

On adding bands corresponding to 360, 540 and 850, 
only two (A and B, Fig. 5) of the sixteen first possibili- 
ties lie on a band of all the three families simultaneously, 
and one of these (B) is on the edge of all three. The 
shaded area in the figure is the region of overlap of all 

0.1,5 ~ \ 

+ 1 2 5 o - - _ _ _ _  ~" \ 
I ' ,' \ __  

- 1 ~ 2 5 . o ~ -  2.~.o 

[o. o 

X 

0 -05  0 "10  

Fig. 6. Second s tage of the  solut ion for  purpurogal l in  on a larger  
scale t han  Fig.  5. The b roken  lines indicate  the  region wh ich  
was  shaded  on Fig. 5. 
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three bands which is considered the most likely 
position for the origin. In  Fig. 6 this shaded area is 
drawn in broken lines on a much larger scale, and the 
new shaded area represents the region common to the 
earlier shaded area and to the bands of 920 and 2,22,0. 
(Notice tha t  as 920 happens to be observed zero the 
positive and negative bands coincide exactly.) When 
lines corresponding to 1,25,0 are added (here ~ is 
almost zero so the bands have no appreciable thick- 
ness), one of them passes through the middle of the 
shaded area. 

I t  can thus be seen how the addition of successive 
higher orders confirms the choice and fixes the posi- 
tion of the origin with increasing precision. 

The arbi t rary origin was chosen at  the centre of the 
six-ring and, although the shape of the molecule 
changed very considerably during refinement, the final 
position of the centre of the six-ring is in quite good 
agreement with tha t  found by this method" 

Final coordinates Coordinates from 
from synthesis graphical method 

X 0.036 0.041 
Y 0.128 0.129 

Some theoretical implications 

I t  has been observed, during the application of this 
method to a number of structures, tha t  the more 
highly symmetrical molecules need a larger number of 
lines on the diagram to define the position of the mole- 
cule uniquely. I t  is sometimes possible to find perhaps 
six or seven possible origins which will give reasonable 
agreement for quite a high proportion of the F's.  
Such origins give reasonable agreement residuals for 
the whole zone and Fourier syntheses are quite good, 
but  refinement is not possible. If one of the incorrect 
intersections were taken and then the origin moved 
slightly in any direction, the agreement for these 
reflexions would become worse and the normal process 
of refinement would be discontinued. The implication 

is tha t  when a structure of this type gives moderately 
good agreement but  will not refine, the position of the 
molecules may be far removed from the correct one. 
This happened for triphenylene, as mentioned in the 
introduction. 

Possible developments 

One or two lines of possible development suggest 
themselves. First  of all, modifications of the method 
might be made for other space groups. I t  is also pos- 
sible tha t  by suitable selection of the reflexions used 
it might be practicable to fix one part  of a molecule 
in the unit cell when the rest is still unknown. The 
obvious example is tha t  quoted earlier of a molecule 
containing a benzene ring. If only reflexions corre- 
sponding to the ring were used, its exact position in 
the ceil might be fixed. The relative positions of two 
known groups in a given molecule may also be dis- 
covered by suitable modifications. 

I wish to acknowledge my indebtedness to Dr 
H. Lipson, Head of the Department,  and to my col- 
leagues in the Department  of Physics, particularly 
Mr P. R. Pinnock, for much helpful advice, assistance 
and encouragement. 
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